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Some mechanisms by which longitudinal waves are attenuated in non-linear viscoelastic media, whose equation of state takes 
into account the presence of structural changes, are demonstrated. It is shown that the degree of attenuation of a longitudinal 
wave in such media is a linear function of the frequency. 0 2002 Elsevier Science Ltd. All rights reserved. 

It is usually assumed that when solids are deformed within the limits of elasticity the mechanical 
characteristics of the material remain unchanged. However, if a medium has a structure, this structure 
will be broken down on deformation, which leads to a change in the state of the material and, 
consequently, to a change in its mechanical properties. For soils, this change is much greater than for 
metals. If the structural changes of solids are taken into account, i.e. if the mechanical characteristics 
of the material on deformation are assumed to be variable, many facts, observed experimentally [l, 21, 
can be explained. On the basis of this, an equation of state of soil has been proposed, which takes into 
account the breakdown in the structure of the material [3]. As an analysis of this equation of state shows, 
the existence of a relation between the mechanical characteristics of the medium and the degree of 
breakdown of the structure enables certain non-linear properties of the medium when it is deformed 
to be explained, even within the framework of the elastic model, while in the framework of the viscoelastic 
model it has been shown that soils acquire plastic properties when deformed [3]. 

The non-linearity of the elastic and elastoplastic properties of a medium can also be explained 
by structural changes (breakdowns) of the material, which lead to variability of its mechanical 
characteristics [3]. 

Hence, structural change (breakdown) of materials on deformation is an important factor which must 
be taken into account in the equations of state, particularly for media such as soil. 

1. THE EQUATION OF STATE OF STRUCTURALLY VARIABLE MEDIA 

According to the results of experimental research [4, 51, depending on the behaviour of the pressure 
P when there is a change in the bulk strain 0 it is assumed that when there is compression 0 > 0 three 
types of bulk compression diagrams of structurally undamaged soils and rocks are possible (Fig. 1). At 
the beginning of the deformation process, when the breakdown of the structure of the material is small, 
the graphs of P against 8 are qualitatively the same for all types of compression curves (sections OA in 
Fig. 1). Along section OA, for many materials the linear Hooke’s law is obeyed, but for soils and rocks 
the curve begins to deviate from linear along this section. Further, along section AC the form of the 
P(8) curves may be different. For curve 1 along sectionAC the pressure increases as the strain increases, 
Curve 2 corresponds to the case when the pressure remains constant as the strain increases, while curve 
3 corresponds to the case when the pressure falls when the strain increases. Further, after the point 
C on the compression diagrams, the pressure increases when the strain increases and falls when the 
strain is reduced. 

The different variety of loading diagrams P(Q) considered were related [3] to breakdowns of 
the structure of the soil, and it was assumed that when the structure of the material breaks down 
the bulk (shear) compression modulus changes, and also the values of the other mechanical charac- 
teristics; in particular, an interpretation was given of the different forms of compression diagrams of 
soils. 

As a measure of the breakdown of the structure of the soil the parameter 1, = El/O, was taken, where 
8, is the value of the bulk strain for which complete structural breakdown of the material occurs 
(0 G z, G 1). 

tPrikl. Mat. Mekh. Vol. 66, No. 1, pp. 118-126, 2002. 

115 



116 K. S. Sultanov 

Fig. 1 

Breakdown of the structure for a constant load occurs at a different rate depending on the physical 
and mechanical properties of the material. An analysis of existing experimental data on the compression 
of soils and rocks [4,.5] shows that the different form of curves 1-3 in Fig. 1 can be explained by the 
difference in the rates of deformation and breakdown. 

On the basis of the results of research on the dynamic breakdown of solids [6] the following relation 
is taken as the parameter characterizing the breakdown of a material 

1~ = nV,/WVpi’N) (1.1) 

where IR is a dimensionless parameter, n is the number of dislocations and microcracks that occur in 
the material when it is deformed, V,, is the microvolume of a single dislocation, N is the maximum number 
of dislocations and microcracks that occur, and V, is the maximum possible volume of the dislocations 
in the material. 

Following the well-known approach [6], we can assume that N and V, are constant quantities for a 
given material. Then, the rate of breakdown is given by the relation 

dl,ldt = (NV&-l d( n V,,)/dt (1.2) 

Hence, the rate of breakdown represents the rate of growth of the overall volume of dislocations and 
microcracks in the material. 

When a material is deformed microcracks are produced and their number increases as the rate of 
deformation increases. At large deformation rates finer fractions (fragments) of the body are formed 
[5]. It is well known that the greater the strength of the material the longer the process of formation 
and accumulation of dislocations goes on for different values of the rate of deformation. Judging from 
existing data on the fracture of rocks [6], the rate of deformation plays an important role in the fracture 
of materials, and its relation to the rate of breakdown defines the form of the curves on the compression 
diagram of soils and rocks, shown in Fig. 1. 

Curve 1 corresponds to the case when 

d@/dt > wdl,ldt (1.3) 

where w is a coefficient of proportionality. When the rate of deformation of the material is much greater 
than the rate of breakdown of the structure of the material, a “hardening” is observed on the P(E)) curves. 
In this case we can assume that the formation and accumulation of dislocations and microcracks has 
been completed, and agglomeration of the microcracks, their “healing”, is occurring, in which case, the 
values of the density and compression modulus of the material increase. 

for curve 2 we can assume 

deldt = wdlRldt (1.4 

In this case, a “yield” section is formed on the P(B) curves. On this section the process by which 
dislocations and microcracks are formed and accumulate is accompanied by their partial “healing”. The 
values of the bulk compression modulus of the material decrease slightly. 

When a descending section is formed on the P(0) diagram, we can assume 
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Here the process by which dislocations and microcracks are formed and accumulate is completed by 
fairly intensive breakdown, and the values of the bulk compression modulus of the material falls sharply. 

All the forms of compression diagram shown in Fig. 1 can be observed for the same material depending 
on the degree of breakdown and the rate of deformation. 

The equation of state of a medium, taking into account the breakdown of the structure of the material 
when it is deformed, based on the linear viscoelastic model for a uniaxial compressed state, has the 
form [3] 

W-5) 

where o = -P is the stress and E = 9 is the strain. 
The values of the dynamic compression modulus function ED and of the static compression modulus 

function Es, and also the viscosity parameter uo, are found from the relations 

EdIs I= ED* w(PU - Is I), Es(ls) = Es. exp(a( I - I,)) 

(1.7) 

PoUS) = wxp(a”( 1 - Is)), Is = E/E* 

where E DI, Es,, p, are the moduli of dynamic and static compression and the volume viscosity parameter 
of the soil with a completely damaged structure for low rates of deformations, p, a, a0 are dimensionless 
factors, characterizing the degree of change of these parameters and E. is the value of the strain for 
which complete breakdown of the structure of the soil occurs. 

From relations (1.7) we have that when E = 0 the initial values of the compression moduli and the 
viscosity parameter are 

E DN = ED. expp, Es,,, = Es. expa, uN = p. expa’ 

Hence 

a=p+ln(y,/y.), y* = ED. IE,. 

(1.8) 

(1.9) 

YN = EDN / EsN, p* =pN /ye? a0 =hy* 

The current value ‘yI = ED(ls)/Es(Zs), which depends on the changes in the structure of the medium, is 
determined from the relation 

y! =y*exp(PI(t-IS)), PI =-tn(y*/yN) (1.10) 

Hence we obtain yI = yN when Is = 0 and yl = y. when Is = 0. 
However, it is well known [4-6], that ye depends very much on the rate of deformation. The relation 

between the moduli of dynamic and static compression for a given rate of deformation will therefore 
be taken in the form 

x 
Y=YI+(Ym-Y/j (1.11) 

where ym is the value of y for the maximum values of the rate of deformation permissible in the 
experiments and x is a dimensionless exponent. 

According to expression (l.ll), the ratio ED(Is)/Es(I~) can be considerable for large rates of 
deformation, difficult to achieve in experiments. The existence of large values of y has been discussed 
previously [7]. 

A medium whose behaviour is determined by Eq. (1.6) possesses properties which give rise to 
absorption of mechanical energy, i.e. waves in such a medium attenuate. The problem of the propagation 
of longitudinal waves in a material, whose behaviour is described by Eq. (1.6), is the simplest for 
investigating the absorbing properties of a medium. The attenuation of longitudinal waves when the 
values of the parameters of model (1.6) are constant, was investigated previously in [8]. This problem 
has also been considered [7] for the case of variable viscous properties of the medium. 
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According to experimental data 19-121, the attenuation factor depends linearly on the frequency of 
the longitudinal waves over a wide range. The equations of state, which are special cases of Eq. (1.6), 
do not give a linear relation between the attenuation factor and the frequency [7,8]. 

We will consider the problem of the propagation of longitudinal waves in a non-linear viscoelastic 
medium (1.6). 

2. FORMULATION OF THE PROBLEM AND METHOD OF SOLUTION 

The equations of motion in Lagrangian coordinates for a half-space for the propagation of a plane wave 
have the form 

au a0 o au a& ---= PO at ar 
---_=o 

’ Jr at (2.1) 

where u is the velocity of the particles, t is the spatial coordinate and PO is the initial density of the 
medium. 

The solution of the problem of the propagation and attenuation of longitudinal waves in a half-space 
is reduced to integration of system (2.1), closed by Eq. (1.6), with boundary conditions in the initial 
section 

r=O: O=O, t40; cr=o,sin(lttlT), t>O (2.2) 
and on the wave front 

r = cot : 0=-c&$4=0, u=-cO&=O, co =(EDN/po)K, PL=PN (2.3) 

where T is the half-period of the oscillation of the load, co is the propagation velocity of the wave, and 
cr,,, is the maximum stress (the amplitude of the load which produces the wave). 

We will use the method of characteristics to solve system (2.1), (1.6). We will assume that, when 
conditions (2.3) are taken into account, the wave front that arise are weak and, consequently, when 
they propagate the medium suffers no appreciable breakdowns of the structure. In this case the 
characteristics of Eqs (2.1) (1.6) remain linear. 

The relations along the characteristics have the form 

do T copodu = -ci&jg(o,&)dt, i=+co 

do - c;p,ds = -c,2pog(o, E)dt, i = 0 
(2.4) 

g(b,E)=-e- CJ ( 1 -- 

MS) p”(fs) & E,(/,) 

Ml,) = E,(f,)E,If,) dr 

(~,(~s)-E,(~s))~o(~s)’ 
r=- 

dt 

where ~(1~) is the bulk viscosity of the medium. 
To reduce the number of unknown parameters of the problem, we will introduce the following 

dimensionless variables 

&L-f- &L, u - fJt?l 
ErrI ’ utn m COP0 

$L__ iJo 
PN ’ 

To = pNT 

Equation (1.6) and (2.1)-(2.4) then have the form in variables (2.5) 

ae" 0 

g + Poe0 =$+pO’pO, au0 a0O o au0 a&O _. 
gr+x= ’ z+al”- 

(2.5) 

(2.6) 
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do”+dco =(c’-p”)podto, bIdto =0 
(2.7) 

x = 0: oo=o, PSO; c+ = sin (2nfor”), to>0 (2.8) 

x= to: (70=&0=~0=0 (2.9) 
The solution of the problem was obtained on a computer. Solutions of similar problems were 

previously obtained by the method of characteristics [7,8]. Here the value of the bulkviscosity parameter 
is assumed to be constant; consequently, ~1’ = 1, and the value of y is found from Eqs (1.10) and (Ml), 
but it does not take values less than the achievable value in the calculations. 

3. RESULTS OF CALCULATIONS AND DISCUSSION 

In the problem in question, when longitudinal waves propagate in a medium, the wave front in practice 
does not bring about any breakdown of the structure, consequently, the current value of y1 on the wave 
front, according to relation (l.lO), remains approximately equal to yN. 

In a numerical solution, to determine the parameters of the wave at the (i + l)th step of the 
calculations with respect to time, in the case of load (2.8), the rate of deformation will be represented 
in the form 

de AE _ &; -E;_, _z- 
dt At At (3-l) 

When the rate of deformation is determined by relation (3.1), expression (1.11) takes the form 

( 1 
x 

y*=yN+(Ym-yN) = 
N 

(3.2) 

Note that in the calculations, the rate of deformation, after reaching its maximum value, remained 
constant. 

Further, using relation (l.lO), we determine the current value yl. It should be noted that the 
assumptions made correspond to the case when the modulus of dynamic compression of the soil ED(Zs) 
is constant, while the modulus of static compression Es(Zs) is variable, i.e. y1 = Efis(Zs). In this case 
breakdown of the structure of the soil only affects Es when Zs changes and, consequently, the value of 
E,. In this case, in Eqs (2.7) the value of y = y1 is variable, but is a known quantity. The characteristics 
of Eqs (2.1), (1.6) and the relations along the characteristics remain linear. 

Hence, we have simplified the numerical solution of the problem and, together with this, the 
fundamental relations of the proposed improved model of the soil (1.6) remain in force. 

The absorption coefficient for the medium (in dimensionless form) can be found from the relation 
17-91 

0 crO,=In(op_,/oP)l(Xi-Xi_l), aScO =aspN (3.3) 

where i is the number of sections of the medium, and CT and c$ are the amplitudes of the stresses in 
the sections considered. 

Computer calculations were carried out for the following values of the dimensionless parameters of 
the problem: yN = 1.1, ym = 10, x = 0.5, E* = 0.2 and values of the dimensionless frequency of the 
oscillations of the load (2.2)fo = 5 x lo4 - 5 x 103. 

For p,,, = lo4 s-l these values of the frequencies, according to relations (3.1) and (2.5), correspond 
to the maximum values of the rate of deformation E = 5 x lo4 - 5 x 10e3 s-l, and for pN = lo6 s- the 
corresponding maximum values are two orders of magnitude less. 

For certain versions, the values of x and E* were changed; this will be mentioned later. 
As a result of the calculations we obtained the changes in the wave parameters for tied sections of 

a soil medium in the form of graphs of the change in the dimensionless stresses o” the strains E’ and 
the velocity of the particles u” as a function of the dimensionless variable to. 
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Figure 2 shows the changes with time of the dimensionless stress for fixed sections of a half-space 
filled with soil for different values ofx when f = 5 x lo3 s-l. The curve x = 0 corresponds to a change 
in the load acting on the initial section of the half-space and which produces the wave. The amplitude 
of this load does not change with time (Fig. 2). As the distance from the initial section is increased, 
after the arrival of the wave the stress increases, reaches a maximum and then changes further also 
sinusoidally. The maximum value of the stress in these sections is less than in the initial section. The 
greater the distance from the initial section the less the values of the maximum stress. 

Calculations showed that the amplitudes of the first oscillation of the stress in fked sections of the 
medium is greater than the amplitudes of subsequent oscillations. However, after five-seven 
oscillations, as was observed earlier in [7, 87, the amplitude of the oscillations of the stress becomes 
constant. The difference between the values of the amplitude of the first and steady oscillations of the 
stress increases as the frequency of the wave increases. 

The overall features of the change in the velocity and strains at fked points of the medium are 
analogous to the features of the change in the stress, shown in Fig. 2. For different frequencies the 
overall pattern of the behaviour of the parameters remains the same. Only the amplitudes of the 
oscillations of the wave parameters vary for fixed points of the medium. 

The reduction in the amplitude of the stress with distance for the first and steady oscillations is shown 
in Fig. 3 for different values of the dimensionless frequency. At low frequencies the attenuation of the 
wave is small (curves 1 and 2). As the frequency increases the intensity of the wave attenuation increases 
considerably (curves 3-6). A further increase in the frequency leads to even greater attenuation of the 
wave with distance. 

Fig. 2 

0.8 
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0 50 100 x 

Fig. 3 
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Using the maximum values (amplitudes) of the stresses, strains and velocity of the particles, from 
formulae (3.3) we determined the values of the attenuation factor for these wave frequencies. 
Logarithmic curves of the dimensionless attenuation factor against the frequency of the wave are shoivn 
in Fig. 4 by the small circles. The spread in the points is due to the fact that, because of the assumptions 
made above, the attenuation factors are different in different sections of the medium. 

Figure 4(a) corresponds to the case when ‘(N = y, = ?/m = 4, i.e. the models of a standard linear body 
with constant characteristics. As previously [7,8], in this version of the calculations the attenuation factor 
remains constant for high-frequency waves. At low frequencies we have a linear relation between the 
attenuation and the frequency. Beginning at a frequency off = 5 kHz, the attenuation factor does not 
change. This defect of the standard linear body model is well-known [7-91. 

The results of a calculation for the initial values of the parameters of the problem when 
Et -+ 00 (E* = 106) are p resented in Fig. 4(b). An increase in the value of E* indicates that the structure 
of the medium remains practically unchanged during deformation. However, according to expression 
(3.2), depending on the frequency of the wave, the current values of the ratio of the moduli of the 
dynamic and static compression y change. In this case, the attenuation factor at high frequencies 
increases, but its frequency-dependence remains non-linear. As the frequency of the wave is increased 
the attenuation factor approaches a constant value. 

Figure 4(c) corresponds to a value of E, = 0.02, i.e. another limiting case, when the structure of the 
medium on deformation changes considerably. Here the frequency-dependence of the attenuation factor 
can be assumed to be approximately linear, though there is a considerable spread in the values of the 
attenuation factor around the linear relation. At high frequencies the attenuation factor increases. 

An increase in the value of E, by an order of magnitude (E. = 0.2) leads to a reduction in the spread 
in the values of the attenuation factor around the linear relation (Fig. 4d). In this case the frequency- 
dependence of the attenuation factor can be assumed to be linear. Note that, when determining the 
value of the attenuation factor using relation (3.3), from 70 to 100 values of the extrema of the wave 
in the relations o”(to), &‘(t’) u”(to) and u”(to) were used. Hence, in Fig. 4, for each value of the frequency 
of the wave we obtained from 70 to 100 values of the attenuation factor. At certain frequencies these 
values of the attenuation factor are very close and are practically equal, while for other values of the 
frequencies they have a small spread, which is shown in Fig. 4. In our opinion this is due to the features 
of the approximate numerical method of solution. 

Graphs of the attenuation factor against the frequency, determined using the extremal values of the 
deformations and the velocity of the particles, are absolutely identical with the results presented in 
Fig. 4. 

Hence, the model of the medium proposed here, which takes into account the structural changes in 
the medium when deformed and is more sensitive to the rate of deformation, gives a linear relation 
between the attenuation factor and the frequency of longitudinal waves over a wide frequency band. 
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This confirms the agreement between the proposed equation of state of soil and the results of 
experiments [9-121. Hence it follows that the law of soil deformation [3], which takes into account 
changes in the structure of the material when deformed, gives more accurate results in calculations of 
the parameters of dynamic processes in soils. 
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